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Powder-susceptibility measurements in the temperature region 2-80” K on the chain compounds 
M11(N2H5)1(S04)2, with M = Mn, Fe, Co, Ni, and Cu, show that the magnetic properties of these 
compounds can be interpreted in terms of antiferromagnetic linear-chain systems. The experimental 
results provide information on the magnitude of the intrachain interactions. In addition, ESR 
linewidth experiments were used for a determination of the intrachain interaction in Mn(N,H& 
(SO&. For the interpretation of the data on Fe(NzH&(SO&, the parallel susceptibility of Ising 
chains with S= 2 is calculated theoretically. An estimate for the ratio between the intra- and 
interchain coupling is given. Use is made of preliminary results of specific heat measurements on 
these compounds for the interpretation of the magnetic data. 

I. Introduction 

As part of a research program on the 
magnetic properties of compounds having 
chain structures, which may be expected to 
behave as one-dimensional magnetic systems, 
susceptibility and specific heat measure- 
ments on polycrystalline samples of the com- 
pounds M(N2H&(S0&, with M = Mn, Fe, 
Co, Ni, and Cu (catena-bis(hydrazinium)- 
bis(sulfato)-metal(I1) compounds), have been 
carried out at low temperatures (2-SOOK). 
In this paper the results of the susceptibility 
measurements and some preliminary results 
of the specific heat measurements (carried 
out by F. W. Klaaijsen at the Kamerlingh 
Onnes Laboratory at Leyden and to be pub- 
lished in detail elsewhere (1)) on these com- 
pounds are discussed. 

* Abstracted in part from the Ph.D. Thesis of H. T. 
Witteveen, Leyden, 1973. 

A single-crystal structure determination 
presented by Prout and Powell (2) has shown 
that the Zn ions in the triclinic compound 
Zn(N,H,),(SO,), are coordinated by four 
oxygens belonging to four different, bridging 
SO4 groups and by two monodentate N2H, 
groups, together forming a distorted octa- 
hedral coordination around the metal ion. 
The SO, groups are bridging between two 
adjacent Zn ions, forming chains of metal 
ions along the b-axis. 

Additional structure, magnetic, and spectro- 
scopic studies by Hand and Prout (3) and 
Nieuwpoort and Reedijk (4) on similar com- 
pounds with M = Cr, Mn, Fe, Co, Ni, Cu, and 
Cd have shown that all these compounds 
possess the same geometrical arrangement 
and that most of the measurements (4) 
can be interpreted on the basis of a tetragonal, 
compressed octahedral geometry with an 
additional rhombic distortion. The suscepti- 
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bility and ESR measurements (4) on some of 
these compounds showed the presence of a 
small magnetic interaction between the metal 
ions. 

The metal-metal distances in the chains 
are about 5.3 A. This large distance is pro- 
hibitive for the occurrence of direct magnetic 
interaction between the metal atoms. If 
intrachain interaction is present, it would 
be mainly due to a superexchange mechanism 
via the path M-O-S-O-M. The chains are 
linked to each other via terminal nitrogen 
atoms of the NzH, groups, which form hydro- 
gen bonds with SO, groups of neighboring 
chains. It can, therefore, be expected that the 
magnetic interaction between the chains 
(interchain interaction) is weaker than the 
intrachain interaction, although the distance 
between the metal atoms along the c-axis 
(5.8 A) is roughly equal to the distance within 
the chains (along b-axis, 5.3 A). 

In Section III it is shown that the suscepti- 
bility measurements can be interpreted in 
terms of the one-dimensional linear-chain 
model, indicating that, as expected, the intra- 
chain interaction is relatively much stronger 
than the interchain interaction. 

II. Experimental 

The compounds MZ+(N2H,),(S0&, with 
M = Mn, Fe, Co, Ni, Cu, were prepared by 
adding aqueous solutions of MSO, to an 
aqueous solution of N2H,S04, as described 
previously (4). 

The compounds were checked for purity 
by complexometric metal analysis (accuracy 
0.5x, carried out at the Organic Chemical 
Institute TNO, Utrecht, The Netherlands) 
and by infrared spectroscopy. The results of 
the elemental analysis are listed in Table I. 

The apparatus used for the specific heat 
measurements in the temperature region 1.2- 
80“ K will be described in detail elsewhere (1). 

The susceptibility measurements were 
carried out in the temperature region 2-80°K 
by means of a PAR Vibrating Sample Mag- 
netometer Model 150. The temperature was 
measured with a calibrated GaAs-diode 
against a Cryocel Ge resistance thermometer 
(2-90°K) at the Department of Thermometry 

TABLE I 

METAL ANALYSES OF THE C~MFWJNDS M(N2H&(S0& 

Compound 
%M 

% M calculated found 

MdM-M&Od~ 17.5 17.9 
FW%H~MS04)z 18.0 18.2 
WWM~(S0d~ 18.6 17.9 
NGW-M~W4)2 18.5 19.0 
C0M-MzW.d~ 19.7 19.7 

of the Kamerlingh Onnes Laboratory. Un- 
certainties in T are O.l”K (at the lowest 
temperatures) to 05°K (in the high-tempera- 
ture region). The calibration of the magneto- 
meter was carried out by measurement of the 
room-temperature magnetization of a pure 
Ni sample (accuracy 1%). The magnetic 
field strength was determined by measure- 
ments of the current in the superconducting 
coil that supplies the magnetic field necessary 
for the susceptibility measurements. 

The molar susceptibility x,,, of all compounds 
has been corrected for diamagnetism according 
to the tables of Selwood (5). 

Computer calculations were carried out 
by means of the IBM 360/65 computer at the 
Computer Centre of Leyden University. 

III. Results and Discussion 

(a) Theoretical Introduction 
The interpretation of experimental results 

of magnetic systems is greatly facilitated by 
the utilization of theoretical models that give a 
simplified description of the magnetic inter- 
actions in these systems. The basic properties 
of the models can be understood from the 
spin interaction Hamiltonian 

&7? = -2JZ [aS:*SjZ + b(s,“*sjx + &Y.SjY)], 

where .7 is the exchange parameter between 
nearest neighbors, 2 is the summation over 

ij 
all pairs of ions i and j, and S”, Sy, S’ are the 
components of spin S; the ratio a/b is an 
anisotropy parameter. For a = 1 and b = 0, 
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the so-called Ising model is obtained, de- 
scribing the case of extreme anisotropy in 
the magnetic interactions. If Q = b = 1, the 
Hamiltonian denotes the Heisenberg model, 
in which the magnetic interaction is isotropic. 
The case a = 0 and b = 1 is called the XY 
model or planar Heisenberg model if one 
requires that the spins lie within the XY-plane. 
For 0 < a < 1 and 0 < b < 1, cases intermediate 
between the three models mentioned are 
described. 

The magnetic properties of many com- 
pounds can be described adequately by the 
Heisenberg or Ising model, whereas only a 
few experimental examples are known of the 
XY model (23). The former model gives a 
good description of magnetic systems with 
S-state ions (e.g., Mn2+), because for these 
ions single-ion anisotropy and anisotropy 
in the exchange mechanism are usually very 
small. The Heisenberg model is also successful 
for many CL?+ and Ni2+ compounds. Many 
CO’+ compounds show strongly anisotropic 
properties that can be approximately described 
by the Ising model. The properties of Fe2+ 
compounds are very often intermediate 
between those expected for a Heisenberg 
and an Ising system. More details about the 
models applied to the description of the 

a 

compounds discussed in this paper are given 
below for each compound individually. 

The so-called Dzialoshinsky-Moriya term 
D*S1 x S, that describes the antisymmetrical 
part of the superexchange interaction is not 
included in the discussion above. Obviously, 
this is allowed if the exchange is isotropic, 
but in case of anisotropic exchange this term 
can influence the magnetic behavior. Due to 
the low crystal symmetry of the compounds 
M(N2HJ2(S0J2, it is quite well possible 
that, in particular in the cases M = Fe and Co, 
the Dzialoshinsky-Moriya term influences the 
magnetic behavior. However, from our 
powder-susceptibility measurements, no re- 
liable impression about this influence can be 
obtained. Therefore, this term is not taken 
into account in the discussion of the 
results. 

In Fig. la the molar powder-susceptibility 
x,,, and inverse molar susceptibility l/xm 
of Ni(N2H,)2(S04)2 as a function of tempera- 
ture are shown. As can be seen in Fig. lb, 
the magnetization at 2.2”K is linearly de- 
pendent upon the magnetic field strength 
up to about 25 kOe. Above 25 kOe, the curve 
shows a deviation from this behavior, which 

0-l I I I 63 I’ 0 20 40 60 60 

T(K) 

FIG. 1. (a) Molar susceptibility x,,, and inverse molar susceptibility l/xm of Ni(N,H,)2(S04)t as a function 
of temperature; o = experimental points. The full curve represents the theoretical fit for J/k = -3.35”K 
according to Weng’s results. The straight line through the l/x,,, data represents the Curie-Weiss law. (b) 
Magnetization curve of Ni(N,H&(SO& at 2.2” K. 
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TABLE II 

EXPERIMENTAL VALUES OF SUSCEPTIBILITY 

MEASUREMENTS 

Compound 
Xmax x lo2 

0(oK). (emu/mole) T,,,(“K) 

WWMz(SO& -9.5(S) 4.51(S) 8.7(2) 

Mn(N,HMSOdz -5.5(5) 24.50(25) 4.8(2) 

WW-bX(SO& -3(l) 5.95(5) 2.1(2) 

MN&)~@'% -13(l) 9.65(10) 15.3(3) 
‘WWMSO,), -2X1) 9.10(10) 5.7(2) 

a Uncertainties in the last digit are indicated in 
parentheses in this table and in Table III. 

was found to be a common feature of the 
other M(N2H5)2(S04)2 compounds described 
below. The susceptibility was measured at a 
magnetic field of about 5.5 kOe. Preliminary 
results of these measurements were mentioned 
in a previous communication (6). 

The l/xm curve obeys the Curie-Weiss law 
down to about 35°K with an asymptotic 
Curie temperature 8 = -9.5”K (Table II). 
The broad maximum that is found in the x 
curve at low temperatures (Fig. la) is indica- 
tive for antiferromagnetic dimers, linear- 
chain, and two-dimensional systems. On 
the basis of the crystal structure, it therefore 
seems reasonable to interpret the magnetic 
properties of the compound in terms of an 
antiferromagnetic linear-chain system that, 
as has been remarked above, can probably 
be described by the Heisenberg model. 
In this case, a = b = 1 in the Hamiltonian 
[l], where J indicates now the exchange 
between nearest neighbors in the chains and 
has negative sign for antiferromagnetic coupl- 
ing. The interchain interaction and the single- 
ion anisotropy of the Ni2+ ions are neglected 
at this stage of the analysis. It can be inferred 
from the specific heat measurements (I) and 
from a corresponding entropy determination 
that, as usual for Ni2+ compounds, the magni- 
tude of the spin is S = 1. In 1968 Weng 
published in his thesis (7) numerical results 
for antiferromagnetic Heisenberg linear chains 
of 3 to 7 spins S = 1. By extrapolation of his 
results to an infinite number of spins, he ob- 

-tained the susceptibility and specific heat as a 
function of temperature for antiferromagnetic 
Heisenberg chains with S = 1 (7). 

By fitting our susceptibility results to 
Weng’s theoretical susceptibility curve, one 
obtains a value for the intrachain interaction. 
With the variable parameters J/k and g, 
the high-temperature part of the experimental 
curve (Fig. la) is fitted well to the theoretical 
curve for J/k = -3.35”K (Table III) and g = 
2.17. The g-value is in good agreement with 
the value of about 2.2 that is usually found for 
the spectroscopic splitting factor of Ni2+ 
compounds. 

From the experimentally determined values 
of the maximum in the susceptibility (x,& 
and of the temperature (Z”,,,,,(x)) at which 
xmax occurs (Table II), values for J/k are also 
obtained by means of the following relations, 
derived by Weng : 

k~maxwI.~I = 2.7 PI 

1 JIXmax/Ng2 j.?’ = 0.0872 [31 

where N = Avogadro’s number and /3 = Bohr 
magneton. Using the g-value from the high- 
temperature fit, the J/k-values are calculated 
(Table III). 

The differences between the three obtained 
J/k-values fall within experimental error. 
It is seen in Fig. la that, if the high-temperature 
fit is extended to the lower-temperature 
region, agreement between experiment and 
theory remains good. Thus, we can describe 
our susceptibility data very well by Weng’s 
theory, assuming J/k = -(3.3 + O.l)“K. 

Applying Weng’s theoretical results to fit 
the high-temperature part of the experimental 
specific heat curve (corrected for the lattice 
contribution), the value J/k = -2.7”K is 
obtained. From the temperature T,,,,,(C) = 
3.7”K (C = specific heat) and Weng’s theoreti- 
cal relation for T,,,,,(C): kT,,,,,(C)/IJI = 1.8, 
it is found that J/k = -2.O”K. Not only is a 
large difference observed between the two 
J/k-values as obtained from the specific 
heat data, but also between these two values 
and the J/k-value, calculated from the sus- 
ceptibility. 

This discrepancy cannot be explained at 
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present, but the disagreement may be due to 
the occurrence of single-ion zero-field split- 
ting. Because of the strongly distorted 
octahedral coordination of the Ni ion, it is 
possible that the zero-field splitting parameter 
D cannot be neglected and may even be of the 
same order of magnitude as J. 

As far as known, no theory is available 
which describes antiferromagnetic Heisenberg 
chains including zero-field splitting of the 
S = 1 state, so that even a qualitative study of 
the influence of D on the susceptibility and 
specific heat is not feasible. However, from a 
recently published theory for S = 1 dimers, 
including zero-field splitting, it is seen that 
neglection of D does not influence the sus- 
ceptibility of the dimers very much (8). For 
the magnetic specific heat curve, it is expected 
that the broad maximum in this curve orig- 
inates from the contribution of the broad maxi- 
mum of a Schottky anomaly, caused by the 
zero-field splitting (9), and the broad maximum 
due to the antiferromagnetic dimer interaction. 
By extension to linear chains, it is understand- 
able that the magnetic specific heat curve 
cannot be fitted with Weng’s results, whereas 
a good fit is found for the susceptibility curve. 

Other antiferromagnetic linear-chain NP 
compounds, RbNiCl, and CsNiCl,, have 
much larger J/k values (20, II) and are less 
distorted from cubic symmetry so that D <J. 
The experimental susceptibility of these 
compounds can be fitted well using Weng’s 
theory (11). A comparison with specific heat 
results is not possible, because only a few speci- 
fic heat data are known for CsNiCl, (12). 

Compounds having linear-chain properties 
practically always show a magnetic transition, 
where 3-dimensional, long-range order sets 
in, due to the interchain interaction. The 
specific heat measurements did not indicate 
such a transition point down to 1.5”K, 
indicating that the interchain interaction is 
much weaker than the intrachain interaction. 

A last remark about Ni(NZH&(S0J2 
concerns the “anomalous” behavior of the 
magnetization curve (Fig. lb). Such behavior 
is predicted by several theoretical investiga- 
tions on antiferromagnetic Heisenberg and 
Ising linear-chain models with spin S = l/2 
and 1 (7, 13-16) and has been measured ex- 

0 -__ 

0 ‘0 20 3 40 5, EGO 70 

TiK) 

FIG. 2. Molar susceptibility x,,, of Mn(&H&(SO& 
as a function of temperature. 0 = experimental points. 
The full curve is the best fit obtained using Weng’s 
interpolation scheme for J/k = 459°K and g = 2.01. 
The dashed curve is the best fit obtained using the 
scaling method for J/k = -0.615”K and g = 2.01. 

perimentally for, for example, the linear- 
chain compounds Cu(NH,),SO,.H,O (27) 
and CuCl,.2NC,Hs (18). For the other 
compounds described below, similar magnetiz- 
ation curves are found. 

The observed susceptibility of 

Mn(N2HsLtSW~ 

is shown in Fig. 2. The susceptibility 
was field independent up to about 10 kOe. The 
measurements were carried out at a field 
strength of about 2.7 kOe. The curve shows the 
broad maximum that, on the basis of the 
crystal structure, is typical for an antiferro- 
magnetic linear-chain system. The asymp- 
totic Curie temperature 0 = -5.5”K (Table 
II). 

The magnetic system of MnZf compounds 
can be described by the Heisenberg model. 
ESR measurements revealed (4) that the single- 
ion anisotropy of Mn(N,H,),(S0J2 is very 
small (D = 0.025 rf~ 0.005 cm-‘), so that it can 
be neglected. 

Within the Heisenberg model, one knows 
two theoretical approximations for the de- 
scription of antiferromagnetic linear chains 
with S = 5/2. By scaling at high temperatures, 
the exact results of Fisher (19) for an anti- 
ferromagnetic linear chain with S = a, to 
the series expansion results of Rushbrooke 
and Wood (20) and Wagner and Friedberg 
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(22) obtained Eq. [4] for the molar suscepti- 
bility : 

Xm = 
Ng’ fi’ S(S + 1) 1 + u(K) 

3kT *Ei(@ [41 

where u(K) = coth K - 1 /K and K = 2JS((S + 
l)/kT). The sign of J is again negative. In this 
approximation xmalr and T,,,,,(x) for S = 5/2 
are related to J by : 

IJIXmnx/Ng2 /I” = 0.1004 151 
and 

kTm,xWIJI = 8.2. 161 
The other approximation method is an 

interpolation scheme for arbitrary spin S, 
introduced by Weng (7). For this scheme he 
uses the Hamiltonian 

‘-2 fti-s, 

x = -2’2;(S + 1) 

with general spin S. On the basis of this 
Hamiltonian, the results for S = 00 are the 
same as given by Fisher (29) for S = to and the 
results for different S-values agree at infinite 
temperature. Weng assumes now that an 
arbitrary thermodynamic quantity Y(S, T), 
depending on temperature T and spin S, 
obeys the relation 

y(s 
9 
T) = 4T) s + W”) = a’(T) s + W”) 

c(T) S + d(T) S+&(T) ’ 

[71 

where a’(T), b’(T), and d’(T) depend on temp- 
erature but are independent of S. Tabulating 
the known numerical results (23) for anti- 
ferromagnetic Heisenberg linear chains with 
S = l/2, the numerical results (7) for S = 1 and 
the exact results (19) for S = a, on a reduced 
temperature scale kT/21JIS(S+ l), the un- 
known constants a’(T), b’(T), and d’(T) can be 
calculated for each value of kT/2lJIS(S+ 1). 
In this way, the susceptibility and specific heat 
curves for arbitrary spin value are obtained. 
By means of this interpolation scheme, it is 
found that for S = 512: 

and 
IJIX,,,!,,,/Ng2~2 = 0.0949 181 

kTm,xW/IJI = 9.8 191 

Using Eqs. [5, 6, 8, 91, the experimental 
values for xmax and T,,&) (Table II), and the 
value g = 2.01, as found by Nieuwpoort and 
Reedijk (4), the .7/k-values in Table III are 
derived. Also in this table are given the J/k- 
values obtained from the fits to the high-temp- 
erature part of the susceptibility curve (Fig. 2 
with g = 2.01 and J/k as variable parameter. 
It is noticed that the best result is found by 
means of the scaling method of Wagner and 
Friedberg (22). 

This is in contradiction with Smith and 
Friedberg’s conclusion (22), drawn from their 
results on the antiferromagnetic Heisenberg 
linear-chain compound CsMnCl, *2H,O, that 
Weng’s interpolation scheme seems the better 
approximation method. The conclusion of 
Smith and Friedberg is supported by de 
Jongh and Miedema in an extensive review 
on compounds with one-dimensional magnetic 
properties (23). 

It is not possible at present to give an ex- 
planation for these conflicting results, but a 
few remarks are appropriate. 

First, if a small paramagnetic impurity is 
present in the sample of Mn(N,H,),(SO,),, 
this would tend to increase xmsx and to shift 
T,,,,(x) to a lower temperature. This impurity 
would not influence the susceptibility in the 
high-temperature region. This is precisely 
what is observed when the experimental results 
are compared with the interpolation scheme. 
Taking into account the results of the chemical 
analysis of the Mn(N2H,),(S0,), sample 
(Table I), it is clear that paramagnetic impuri- 
ties cannot amount to more than a few percent. 
Impurities can possibly be the compounds 
MnSO, *(H,O),.(x = 0,1,4,5). As far as sus- 
ceptibility data of these compounds exist for 
the low-temperature region (24-27), we con- 
clude that the presence of a few percent of some 
of these compounds can cause the deviations 
of about 1 x 10e2 emu/mole between the 
experimental curve and the theoretical curve 
derived from the interpolation scheme in the 
region around T,,,&). It is also concluded 
from these data that at higher temperatures, 
the experimental susceptibility curve can 
hardly have been influenced by the impurities. 

In the second place, the presence of aniso- 
tropy in the magnetic system would also cause 
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a shift of xrnal to lower temperatures and to 
higher values (7, 13). But, as has already been 
remarked, the anisotropy is very small and can 
at most have a minor influence on the sus- 
ceptibility curve. 

Further, it is noticed that Mn(N,H,), (SO,), 
is not equally good an example of a one- 
dimensional system as CsMnCl,. 2Hz0. Where- 
as in the latter compound (22,28) L!‘,,,,&)/T, = 
6.3, for Mn(N,H,),(SO,), it is found, by 
means of specific heat measurements (I), 
that TN = 2.09”K, hence T,,,,,(~)/T, = 2.3. 
This indicates that in this compound the inter- 
chain interaction is much stronger than in 
CsMnC1,*2H,O. Neutron scattering experi- 
ments on some antiferromagnetic linear- 
chain compounds demonstrate that up to 
temperatures of about 2T, to 4T,, the effect 
of interchain interaction is noticeable (28,29), 
in other words, 3-dimensional correlations are 
found between the chains. Because of this 
phenomenon and the fact that the theoretical 
approximation holds for pure l-dimensional 
systems only, it can be expected that in linear- 
chain compounds, where T,,,,,(x) is about 
2-3 times TN (hence with a relatively large 
interchain interaction), the susceptibility 
shows deviations from the theoretical picture 
in the region below and at T,,,,,(x). It is possible 
that the 3-dimensional correlations in linear- 
chain systems above TN cause an increase of the 
susceptibility above TN, compared to the 
susceptibility of an ideal l-dimensional system. 

Probably one or a combination of more of 
the phenomena described above explains 
the difference between the conclusion of 
Smith and Friedberg (22) and our results 
for Mn(N2K)2W4)2. 

From the specific heat data T,,,,,(C) = 
(2.5 k 0.3)“K is determined. The uncertainty 
in this value is rather large due to overlap 
of the strong peak, caused by the 3-dimensional 
ordering at TN = 2.09”K, with the broad 
maximum in the specific heat curve. By means 
of the relation kT,,,,,(C)/IJI = 5.6, obtained 
with the interpolation scheme (Eq. [7]), the 
value J/k = -(0.45 L- O.OS)“K is calculated 
(Table III). This value is in agreement with 
the one obtained from T,,,,,(x). 

It has also been possible to determine J/k 
by means of a paramagnetic linewidth study, 

in particular, the so-called “lo/3 effect”. 
The great advantage of this method is that, 
if some special conditions are fulfilled, the 
magnetic exchange can be calculated from the 
ratio between the linewidths of two ESR 
signals recorded at two different frequencies 
(e.g., in X- and Q-band) at room temperature. 
The special conditions are that only dipolar 
interaction and isotropic magnetic exchange 
are present and that the latter is stronger than 
the former. Kubo and Tomita (30) have 
derived the following expression for the line- 
width AH of the ESR signal as a function of 
the measuring frequency& : 

AH = g [l + O/3) exp {-HL,/fe)2) 

; (213) wW(folfe>z~l~ WI 
where Hd = dipolar field and the range of f0 
should be comparable to the frequency fe 
that is correlated to the exchange field 

HeCfe = gNfe/h). 
In the limit He 9 H&i, = gj?H,/h), AH is 
10/3 as large as in the limit Ho B He. 

Pleau and Kokoszka (31) employed Eq. 
[lo] to calculate the ratio of linewidths at two 
frequencies in terms of the magnetic field 
He. To relate He to J, they used the expression 

(gj3He/h)2 = (8/3) z&S + 1) J2 [Ill 
given by Moriya (32). Here z = number of 
magnetic nearest neighbors. 

Because the compound Mn(N,H,),(SO,), 
fulfills the conditions required for the appli- 
cation of the “lo/3 effect”, the ESR signals of 
this compound were recorded at room temp- 
erature at the frequencies 9.5 GHz (X-band) 
and 35.5 GHz (Q-band)‘. The spectra were 
recorded as the derivative of the absorption 
curve with a Varian V-4502/3-10/A spectro- 
meter of which details have been published 
elsewhere (33). The measured linewidths were 
241 f 4 and 212 + 4 Oe at X- and Q-band 
frequencies respectively, resulting in a line- 
width ratio 0.88 f 0.03 and an intrachain 
interaction J/k = -0.52 &- O.O8”K, calculated 
by means of Eqs. [lo] and [ll] (Table III). 
Within experimental uncertainty, this value 

1 These measurements were carried out by B. 
Nieuwenhuijse and P. G. van den Akker at the Tech- 
nological University of Twente, The Netherlands. 
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FIG. 3. Molar susceptibility x,,, of Cu(N,H5)#0.& 
as a function of temperature. 0 = experimental points ; 
w = experimental points obtained from zero-field 
susceptibility measurements. The full curve is the best 
theoretical fit for J/k = -2.WK and g = 2.12. 

is in agreement with the J/k-values obtained 
via susceptibility and specific heat measure- 
ments. 

In Fig. 3 the x,, curve of Cu(N,H,),(SO,), 
is depicted. The susceptibility at 2.1”K was 
field independent up to about 35 kOe. The 
plotted data refer to measurements at about 
10 kOe. 

The susceptibility curve (as measured with 
our apparatus down to 2.1”K) did not exhibit 
the broad maximum as found for the Ni and 
Mn compound (Figs. la and 2). From the 
reciprocal susceptibility versus temperature 
curve, it was determined that 8 = -3 + 1°K 
(Table II). By analogy with the Ni and Mn 
compound, one would expect an antiferro- 
magnetic intrachain interaction. Probably the 
intrachain interaction is so small that the 
expected broad maximum only occurs below 
or in the neighborhood of 2.1”K. To obtain 
experimental data in the temperature region 
below 2.1 “K, zero-field susceptibility measure- 
ments were performed with a twin-T-bridge 
at a frequency of about 300 kHz2 A detailed 
description of this apparatus will be published 
elsewhere (34). With this bridge, the real part 
x’ and the imaginary part x” of the complex 

2 These measurements were carried out by S. Hillaert 
at the Kamerlingh Onnes Laboratory, L.eyden (The 
Netherlands). 

susceptibility x = x’ - ix” are measured 
simultaneously. The measurements on 
CU(N~H&(SO~)~ suggested that (at the 
measuring frequency) x” was practically zero. 
The measurements were carried out in the 
liquid-helium temperature region (1.2-4.2”K). 

Scaling the relative zero-field susceptibility 
measurements to some of our susceptibility 
data in the region around 4”K, the results, 
shown in Fig. 3 and listed in Table II, are 
obtained. 

As remarked above, CuZf compounds can 
often be described by the Heisenberg model. 
Within this model, Bonner and Fisher (Z3) 
have determined the theoretical susceptibility 
curve for antiferromagnetic chains with 
S= 3, in which curve the following relations 
hold for T,,,(x) and xmax: 

and 
k~mx(X)IIJI = 1 .x32 WI 

IJIXmax/Ng2 /3” = 0.07346 [131 
The best fit of the high-temperature part of the 
x curve is found for J/k = -2.00 + 0.05”K 
and g = 2.12 f 0.02 (Fig. 3). The g-value is in 
reasonable agreement with the averaged 
g-value, defined as g,, = {+[(g12 + g2z + 
‘h2w2 = 2.16, where g, = 2.05, g, = 2.10, 
g, = 2.34 were taken from the measurements 
by Nieuwpoort and Reedijk (4). Using the 
experimental values of T,,,,,(x) and xmax 
(Table II), the g-value from the high-tempera- 
ture fit, and Eqs. [12] and [13], the intrachain 
coupling is calculated to be J/k = -1.65”K 
and J/k = -2.lO”K, respectively (Table III). 

It is noticed that the theoretical fit and the 
experimental curve agree well except in the 
region around T,,,,,(x), where a small dis- 
crepancy appears. This discrepancy might 
well be related to the small anisotropy in the 
magnetic system, which is suggested by the 
presence of small differences between the g- 
values (4). Another explanation could be found 
in the presence of interactions other than those 
arising from nearest neighbors. 

The value C,,,,,(exp)/R = 0.34, obtained 
from the specific heat measurements, agrees 
very well with the theoretically expected 
value (23) for an antiferromagnetic Heisenberg 
linear-chain system with S = l/2 : C,,,(theor)/ 
R = 0.35. 
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FIG. 4. Molar susceptibility x,,, of Fe(NZH5)&30& 
as a function of temperature; 0 = experimental points. 
A smooth curve is drawn through the experimental 
points. 

With the experimental value T,,,,,(C) = 
1.8”K and the theoretical relation (13) 
kT,,,,,(C)/IJI = 0.962, the intrachain inter- 
action is calculated to be J/k = -1.87”K 
(Table III). This value is in good agreement 
with the value obtained from the best fit of 
the susceptibility curve. 

The experimental susceptibility of 
Fe(N,H,),(SO,), is shown in Fig. 4. At 
2.O”K, the susceptibility was independent of 
the magnetic field strength up to about 20 
kOe. The susceptibility was measured as a 
function of temperature at about 5 kOe. 
In Fig. 4 again a broad maximum is noticed. 
The high-temperature part of the reciprocal 
susceptibility curve obeys the Curie-Weiss 
law with an asymptotic Curie temperature 
8 = -13 + 1 “K (Table II). 

The theoretical interpretation of the sus- 
ceptibility gives rise to serious problems. 
As already remarked, it is usually not possible 
to describe the magnetic properties of Fe’+ 
compounds by means of either the pure 
Heisenberg or Ising model, due to the fact 
that in these compounds the crystalline field 
anisotropy and the magnetic interaction are 
often of the same order of magnitude. Another 
complication due to the crystalline field 
anisotropy is that the effective spin quantum 
number is temperature dependent. 

The total entropy of the spin system of 
Fe(NZH&(S0.J2 up to about 80”K, as de- 
termined by means of the specific heat data (I), 
agrees with spin S = 2. This spin quantum 

number can be understood in 
way. 

the following 

In a cubic octahedral field, the 5D state, 
which is the ground state of the free Fe*+ 
ion, splits into a lower orbital triplet and a 
higher orbital doublet. The splitting of the 
orbital triplet, caused by the simultaneous 
action of an axial crystal field and spin-orbit 
coupling, has been calculated by Inomata and 
Oguchi (35) and Griffith (36). From their 
energy level diagram, it can be concluded that, 
if the effective spin value at low temperatures 
is S = 2, the ratio d/n (6 = ground state splitting 
and ,J = spin-orbit coupling parameter) is 
fairly large and positive: s/L z 10. This 
conclusion is in accordance with the results, 
obtained from magnetic and Miissbauer 
measurements by Nieuwpoort and Reedijk 
(4), that the octahedral coordination of the 
Fe ion is deformed into a compressed, tetra- 
gonal structure with four spectrochemically 
weak oxygen ligands in the equatorial plane 
and two spectrochemically strong nitrogen 
ligands in the axial direction. This deformation 
leads to a zero-field splitting parameter D. 

We will first try to describe the magnetic 
properties of Fe(N,HJ,(SO,), within the 
Heisenberg model applied to antiferromag- 
netic chains with S = 2 (in this model D is 
neglected). By means of the interpolation 
scheme of Weng (7), described in Section IIIc, 
theoretical susceptibility and specific heat 
curves for such chains are calculated. For 
x max and T,,,(x), the relations 

k~m&I/IJI = 6.9 [I41 
and 

IJI~max/Ng2/32 =0.0937 

are derived. 

El51 

Theoretical susceptibility curves are also 
obtained by applying Eq. [14] of the scaling 
method, also described in Section IIIc, to the 
case S = 2. This method yields 

k~max(xMJl = 5.9 WI 
and 

IJIlxmax/Ng*P* = 0.1004 [I71 

Because the latter approximation method 
becomes poorer for small spin values, Eqs. 



[ 141 and [ 151 are probably more reliable than 
Eqs. [16] and [17]. 

With Eqs. [14] and [ 161 and the experi- 
mental value of T,,&) (Table II), the values 
J/k = -2.22 f 0.04”K and J/k = -2.59 + 
0.05”K are calculated respectively (Table III). 
The spectroscopic splitting factor g of 
Fe(N,H,),(SO& is not known, but is usually 
anisotropic for Fez+ compounds. Hence 
Eqs. [15] and [17] cannot be used. For these FIG. 5. IJIx,,/Ng2Bz as a function of kT/IJj for an 

relations another problem also arises because antiferromagnetic Ising linear-chain system with 

the van Vleck paramagnetism probably cannot 
s=2. 

be neglected for the Fe compound. With our 
data it is not possible to determine the contri- 

with n spins is given by Z= Tr(P)” where 

bution of this effect to the total susceptibility. 
P is the symmetric matrix: 

It is clear, however, that, corrected for the 
van Vleck term, the value of xmax will become 

PSzSL = exp 
[ 

J 
2~~s~ S,’ - kT KH(Sz + S,‘) 1 * 

smaller. Neglecting the van Vleck contribu- 
tion and trying to fit the high-temperature In approximation the partition function is 

part of the experimental susceptibility curve given by 2 = [A(P)]” with A(P) = largest 

by means of the interpolation scheme, eigen value of matrix P. For any case with 

only very poor fits are found for J/k in the specific S, J/k, and g values, x can be obtained 

range -(2.2-2.3)“K and g in the range 3.1- numerically by computer calculations of I(P) 

3.2. 
and i?[A(P)]/iTH, using the relation 

The magnetic anisotropy of the Fe com- 
pound motivates the use of the Ising model. X=lim 

kTC@Z) 

n-to HaH ’ 
For the interpretation of the experimental 
data one can consider, therefore, the following From the numerical results obtained for S = 

Hamiltonian : 2 and a set values of J/k and g, the theoretical 
curve in which the dimensionless magnitude 

2 = -25 2 S,= S; + D s (S,‘)‘, lJ/x,, /Ng2B2 is given as a function of the 
dimensionless magnitude k7’/) JI, is composed 

where D is the crystal-field splitting parameter. (fig. 5). In this curve 
In the case that the magnitude of D is com- 
parable to J, the mathematics of the model 

k~maxWIJI = 7.5 WI 
become intractable. To obtain an estimate of 

and 

J, we have neglected, therefore, the crystal- IJIXmax/Ng2 /I” = 0.1009 P91 
field splitting and apply the Ising model with The validity of this method is supported by 
S = 2. Within the Ising model no results 
were known for the parallel susceptibility 

the very good agreement between the x,, 
curves for S = 1 and 312, obtained in the way 

x,, of linear chains with S = 2 (magnetic described above, and the curves obtained by 
field parallel to the axis of anisotropy). Suzuki et al. (38) for Ising chains with the 
Therefore, x,, is calculated by means of a same spin values. 
matrix described in the literature (37) and Describing now the linear chains in 
used before by Wagner and Friedberg (21) 
for the case S = 5/2.3 

Fe(N,H,),(SO,), with the Ising model, the 
value J/k = -2.04 f 0.04”K is found by means 

The partition function of an Ising chain of Eq. [18] (Table 111). But if J/k is calculated 
3 The computer calculations necessary for this in this way, an error is introduced because the 

method have been carried out by J. A. R. van Veen powder-susceptibility curve is made up of 
and W. Vermin at the Department of Solid State x ,, and xL (magnetic field perpendicular to the 
Chemistry of the Gorlaeus Laboratories. direction of anisotropy). Unfortunately, for 

LINEAR-CHAIN ANTIFERROMAGNETISM 161 



162 WITTEVEEN AND REEDIJK 

xL of Ising chains, a theoretical result (39) 
is known only for spin S = l/2. For S = 2, 
nothing definite can be said about the influence 
of x1 on the behavior of the susceptibility 
curve. Again, relation [19] cannot be used 
because the g-value and the van Vleck para- 
magnetism are unknown. 

The specific heat measurements (I) give 
the experimental values T,,,,,(C) = 12.3”K and 
C,,,,,/R = 0.96. From the specific heat data, no 
indications are found that D ismuchlargerthan 
J. Therefore, the possibility that the magnetic 
system of the compound can be described by 
the Ising model with effective spin S= l/2 
can probably be excluded. For the antiferro- 
magnetic Heisenberg linear-chain system with 
S = 2, the interpolation scheme yields the 
relations C&,/R = 0.67 and LT,,,,,(C)/IJj = 
4.25. For antiferromagnetic Ising chains with 
S = 2, it is known (40) that C,,,/R = 1.48 
and kT,,,,,(C)/IJ[ = 3.75. So the experimental 
value of C,,,,,/R lies between the theoretical 
values of the Heisenberg and Ising model, 
which is probably an indication that the 
character of the chain system in 

is intermediate between the two models. 
The experimental value of T,,,,,(C) gives 
J/k = -2.90”K and J/k = 3.28”K for the 
Heisenberg and Ising models, respectively. 

Summarizing all results obtained for J/k 
in the different theoretical models, it seems 
reasonable to estimate the value J/k = 
-2.5 + 0.5”K for the intrachain coupling. 
Without more experimental data and more 
sophisticated theoretical approximation 
methods, it is not possible to calculate a more 
precise result. 

For Fe(N,H,),(SO&, a reasonably trust- 
worthy value of the transition temperature 
TN at which 3-dimensional ordering sets in 
can be obtained from the susceptibility data, 
because for linear-chain compounds, there 
are reasons to believe (II, 42) that in 
the powder-susceptibility curve TN occurs 
at the maximum value of Sx/ST. In Fig. 4, 
this maximum is located at TN = 5.5 _+ 0.5”K. 
This value is confirmed by the specific heat 
measurements that revealed a transition 
temperature TN = 5.9”K. 

2’ 

FIG. 6. Molar susceptibility x,,, of Co(N2H&(S0& 
as a function of temperature; 0 = experimental points. 
A smooth curve is drawn through the experimental 
points. 

The experimental susceptibility curve of 
Co(N,H,),(SO,), is depicted in Fig. 6. The 
susceptibility appeared to be field independent 
up to about 10 kOe. The results quoted refer 
to measurements at about 3 kOe. The broad 
maximum is noticed again and the high- 
temperature part of the reciprocal suscepti- 
bility curve obeys the Curie-Weiss law with 
8 = -22 + 1°K. 

In a cubic octahedral field the 4F orbital 
state of the free Co” ion splits into three 
levels of which the lowest level 4T is triply 
degenerate. Under the action of an axial or 
rhombic distortion of the crystal field in 
combination with spin-orbit coupling, the 
4T level splits into six Kramers doublets 
(42), causing the ground state of the Co’+ 
ion to be a doublet. Usually, the splitting 
between the lowest lying doublets is so large 
that at low temperatures an effective spin 
S = l/2 can be used for the description of the 
spin system of Co2+ compounds with the 
Co ions in a distorted octahedral coordina- 
tion, as is also the case for CO(N,H,),(SO,)~. 
From the entropy at low temperatures, de- 
termined by the specific heat measurements, 
an effective spin S = l/2 is indeed found. 
Furthermore, from the specific heat measure- 
ments, one derives that the splitting between 
the two lowest lying doublets is about 180”K, 
so that the contribution of the van Vleck 
term to the susceptibility cannot be neglected. 

Due to the pronounced anisotropic charac- 
ter of many Co2+ compounds the Ising model 
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is often used to describe the magnetic proper- 
ties (23). However, the results of the specific 
heat measurements of Co(N,H,),(SO,), indi- 
cate that for this compound the Heisenberg 
and XY model (see Section IIIa) cannot 
be excluded in the first instance in the theoreti- 
cal description (vide infru). 

From theoretical calculations, it has been 
found that C,,JR = 0.326, 0.350, and 0.445 
for the XY, Heisenberg, and Ising models 
of linear chains with S = l/2, respectively 
(13, 14, 38, 40). Experimentally, it is found 
that C,,,,,IR = 0.325, which value is in good 
agreement with the XY and the Heisenberg 
models, but not at all in agreement with the 
Ising model. 

Using the experimental values of T,,,(C) = 
4.3”K and T,,,,,(x) = 5.7”K (Table II), it is 
calculated that T,&)/T,,,(C) = 1.33, which 
value is in very good agreement with the theor- 
etical value in the Heisenberg model (13). 
But this may be fortuitous in view of the fact 
that the powder-susceptibility curve of 
Co(N,H,),(SO,), is composed of x1 and x ,, . 
The Ising model predicts (24,38,39): 

and 
L(X ,,ms) = 2.40 

~lnaxwI~lnax(c) = 1 .oo 
It is possible, therefore, that a mixture of 
both ratios gives a value for T,,&&,,& 
T,,,(C) that is in accordance with the value 
obtained from the Heisenberg model. 

ESR measurements carried out at liquid 
hydrogen temperature4 on a sample of the 
compound Zn(N,H,),(S04)2 doped with 
about 1% Co2+ revealed the following values 
of the g-components : 

g, = 2.20 + 0.01; 
g, = 4.40 f 0.02; 
g, = 5.45 & 0.02, 

which values will probably not differ very 
much from the g-values of the undiluted 
compound Co(N,H,),(SO,),. From the diff- 
erence in magnitudes of the g-values, it is 
obvious that a considerable anisotropy is 

4 These measurements were carried out by J. van 
Dijk at the Department of Chemistry, Technological 
University, Delft (The Netherlands), by means of a 
Varian E 3instrument. 

present. It may be noted that one g-value 
is relatively small and the other two g-values 
are much larger. This fact, in combination 
with the experimental value of C,,,,,/R (see 
above), indicates that the XY model could be 
the appropriate model to describe the mag- 
netic properties of Co(N,H,),(SO,),. Besides 
this model also the Heisenberg and Ising 
model will be used for the interpretation. 

X Y Model 

Calculations on basis of this model (14, 23) 
give 

k~ma,(x,)/IJI = 0.64 PO1 
and 

IJIx,,,,,(J->/W2P2 = 0.174. WI 
Combining the experimental value of T,,,,,(x) 
with Eq. [20] yields J/k = -8.9 f 0.3”K (Table 
III), but in this way the contribution of x,, to 
powder is neglected. However, for x ,, no theor- 
etical results are known. By using Eq. [21] 
problems arise due to the lack of knowledge 
about the van Vleck contribution. Another 
complication concerns the fact that the g- 
values obtained by the ESR measurements 
are identified with the axes of the distorted 
octahedra and these axes do not coincide with 
the crystal axes. From the relation (14) 
kT,,,(C)/IJ/ w 0.64 and the experimental 
value T,,,,,(C) = 4.3”K, it is calculated that 
J/k = -6.7”K (Table III). 

Heisenberg Model 

Within the Heisenberg model, the relations 
[12] and [ 131 (Section IIId) are valid (13) for 
antiferromagnetic chains with S= l/2. With 
Eq. [11] and the experimental T,,,,,(x), it is 
calculated that J/k = -4.5 + O.l”K (Table 
III). The application of Eq. [13] gives rise to 
problems, due to the anisotropic g-values and 
the van Vleck term. Neglecting the van Vleck 
term and using the experimental value of 
xmax (Table II) and the g-value g,, = [+(g12 + 
g,’ + g32)]1/2 = 4.23, the intrachain interac- 
tion is calculated to be J/k = -5.40”K. If the 
x curve were corrected for the van Vleck 
contribution, X,,,Jexp.) would be lower and 
1 J/kl, therefore, higher. 

A theoretical fit with the experimental 
curve was not found within the Heisenberg 
model. 
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From the experimental T,,,,,(C) and the 
relation (23) kT,,,,,(C)/J = 0.962, the value 
J/k = -4.47”K is obtained (Table III). 

Ising Model 

If we want to describe the powder-suscepti- 
bility curve with the Ising model, x ,, as well as 
xI have to be taken into account. For x,, it is 
calculated theoretically that 

and 
WI 

I~Ixm,,(mw82 = 0.09197. 

For xL one knows that (39) 

[231 

and 
kT,,,&,)/IJI = 0.4186 [241 

IJIxr,,,,CL)/W B’ = 0.2999. WI 

From relations [22] and [24], the values 
J/k = -57”Kand J/k = -13.6”K are obtained. 
In a powder-susceptibility curve, T,,,,,(exp.) 
will lie between T,,,,,(exp.) of x1 and T,,,,,(exp.) 
of x,,, so that the real value of J/k would lie 
between -5.7 and -13.6”K. The averaged 
value J/k = -9.7”K of these two results 
provides a rough estimate of the exchange 
interaction. Due to reasons mentioned above, 
the use of Eqs. [23] and [25] gives rise to 
problems again. 

By means of the results (13, 39) for x,, and 
x1, as calculated in the Ising model with 
s = l/2: 

x II = Wg2 B2/4W w(-I JIlW, WI 

xL = (NgZB2/41Jl)(tanh(lJI/2k~) 
+ (IJI/2kT)sechlJI/2kT), [271 

and the formula 

Xpowder = +x II + +xxI, PI 

we have tried to find a best fit with the experi- 
mental susceptibility curve. However, this 
was not feasible. Of course, the van Vleck 
contribution plays a role here. Also, the dis- 
crepancy between the real magnetic system and 
the Ising model may be too large to justify 
the use of the pure Ising system. But it was 
possible with Eqs. [26-281 to obtain agree- 
ment between the theoretical value of T,,,,,(x) 

and the experimental value (Table II) for 
J/k z -11.5”K (Table III) and g w  3.5. 

By means of the experimental value of 
T’,,(C) and the relation kT,,,,,(C)/IJI = 0.416 
as found for the Ising model (14,39, 40), we 
derive J/k = -10.3”K (Table III). 

Summarizing, we believe, particularly 
from the specific heat and ESR measure- 
ments, that the XY model gives the best 
approximation for the magnetic system in 
CO(N,H~)~(SO,)~ and that, therefore, 
Jlk z -7 to -8°K (Table III). But our measure- 
ments do not give sufficient information to 
put this assumption on sound footing. 

Finally, it may be mentioned that the 
specific heat measurements on 

showed a magnetic transition point 
at 1.57”K, indicating that the interchain 
coupling is much weaker than the intrachain 
coupling. 

IV I&a- and Interchain Interaction 

Summarizing all results obtained on the 
various M(N2H,)2(S0,)2 compounds, it is 
concluded that for the Mn and Cu compounds 
reliable values for the intrachain interaction 
are obtained. For the Ni compound, the 
results of susceptibility and specific heat 
measurements show large differences that 
possibly can be explained by the presence of a 
single-ion anisotropy of the same order of 
magnitude as J. The J/k-value calculated from 
the susceptibility data seems to give a reason- 
able estimate. For the Fe and Co compound, 
no precise values of J/k can be derived because 
both compounds are probably examples of 
magnetic systems intermediate between the 
Heisenberg and Ising models and between 
the Heisenberg and XY models, respectively. 
Estimates about the order of magnitude of 
J/k are given in Table III, together with the 
J/k-values of the other compounds. 

The question arises, what is the origin of 
the relatively strong intrachain coupling, 
in spite of the presence of three intervening 
nonmagnetic ligands in the most probable 
superexchange path in the chains: M-O-S-O-M? 
Usually such a number of intervening 
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ligands allows only a very weak interaction. 
This long-range superexchange mechanism 

is probably of the same nature as is found in 
LiMnPO, (43) (superexchange path Mn-O- 
P-O-Mn), LiCuVO* (44) (superexchange 
path Cu-0-V-O-Cu), and in a number of 
other compounds which have been reviewed 
by Blasse (4.5). It can be explained by assuming 
strongly covalent S-O bonds, due to the high 
electron affinity of the S6+ ion in the (SO,)z- 
group. 

The specific heat and susceptibility data 
indicate that the interchain coupling is much 
weaker than the intrachain coupling. This is 
probably due to the weak hydrogen bonds 
that form the links between the N2H, groups 
and SO4 groups of neighboring chains. 
About the ratio between the interchain coupl- 
ing J’ and the intrachain coupling J, the 
following can be remarked. 

Oguchi has calculated (46) by means of 
Green function techniques an approximate, 
numerical relation between the transition 
point TN of an antiferromagnetic Heisenberg 
linear-chain system (with general spin S and 
interchain coupling J’) and the ratio jJ’/J/ 
for a tetragonal lattice structure. By means 
of these results, information about the magni- 
tude of the ratio lJ’/Jl is obtained, using the 
experimentally determined T,-values. This 
method can only give an order of magnitude 
estimate in our case since the crystal structure 
of the M(N,H,),(SO,), compounds is tri- 
clinic and several of the compounds cannot 
be described by the Heisenberg model. 
Another complication is that the interchain 
interactions along the a- and c-axes are 
probably not equal, due to the difference 
between the lengths of these axes (ratio 
between the lengths ~0.8). 

Using (a) the experimentally determined 
TN-values for the Mn, Fe, and Co compounds, 
(b) the fact that for the Ni and Cu compounds 
no transition point is detected down to 1.5”K, 
and (c) the J/k-values, which are estimated 
for the different compounds (Table III), 
the ratios lJ’/Jl, giveninTableII1, areobtained. 
It is seen clearly that jJ’1<131. 

The main conclusion to be drawn from these 
numbers is that J’ is very much smaller than 
J, so that the analysis in terms of linear-chain 

models is very appropriate for these com- 
pounds. 
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